论文标题
通过神经网络双核通过高斯过程进行的强化学习
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
论文作者
论文摘要
尽管深度神经网络(DNN)和高斯过程(GPS)都被普遍用于解决强化学习中的问题,但两种方法都具有不良的缺点,这些缺点是有挑战性的问题。 DNNS学习复杂的非线性嵌入,但并不能自然量化不确定性,并且通常可以进行训练。 GPS推断功能上的后验分布,但流行的内核在复杂和高维数据上表现出有限的表达性。幸运的是,最近发现的结合和神经切线核函数编码了内核域中过度参数化的神经网络的行为。我们证明,通过分析基线案例研究,这些内核可以有效地应用于回归和增强学习问题。我们将GP与神经网络双核应用于首次解决加强学习任务。我们证明,使用富有理解的山车问题,具有双核赋予的GPS至少与使用常规径向基函数核的能力。我们猜想,通过遗传GPS的概率严格和DNN的强大嵌入性能,使用NN双核的GPS将增强在困难域上的未来增强学习模型。
While deep neural networks (DNNs) and Gaussian Processes (GPs) are both popularly utilized to solve problems in reinforcement learning, both approaches feature undesirable drawbacks for challenging problems. DNNs learn complex nonlinear embeddings, but do not naturally quantify uncertainty and are often data-inefficient to train. GPs infer posterior distributions over functions, but popular kernels exhibit limited expressivity on complex and high-dimensional data. Fortunately, recently discovered conjugate and neural tangent kernel functions encode the behavior of overparameterized neural networks in the kernel domain. We demonstrate that these kernels can be efficiently applied to regression and reinforcement learning problems by analyzing a baseline case study. We apply GPs with neural network dual kernels to solve reinforcement learning tasks for the first time. We demonstrate, using the well-understood mountain-car problem, that GPs empowered with dual kernels perform at least as well as those using the conventional radial basis function kernel. We conjecture that by inheriting the probabilistic rigor of GPs and the powerful embedding properties of DNNs, GPs using NN dual kernels will empower future reinforcement learning models on difficult domains.