论文标题

替代矩阵方法:波加速度分析

The surrogate matrix methodology: Accelerating isogeometric analysis of waves

论文作者

Drzisga, Daniel, Keith, Brendan, Wohlmuth, Barbara

论文摘要

替代矩阵方法论提供了通常通过元素尺度正交公式在Galerkin方法中计算出的矩阵(即替代矩阵)的低成本近似值。在本文中,该方法应用于在Galerkin iSoegeotentic设置中处理的波浪力学中的许多模型问题。在此,所产生的替代方法显示可显着减少高频波传播问题中的组装时间。特别是,溶液准确性的损失可忽略不计,减少了组装时间。本文还通过考虑将时间谐波,瞬态和非线性PDE的多块离散化作为方法论的特定用例,从而扩展了先前文章的范围。我们对Helmholtz方程的先验误差分析表明,替代矩阵的存在引入的附加一致性误差与波数无关。此外,我们的浮点分析表明,该方法的计算复杂性与其他当代快速组装技术相比,对于同几何方法。我们的数值实验证明了有或不存在完美匹配的层的时间谐波问题的明显绩效增长。对于可压缩的新霍克材料的瞬态问题,还提出了值得注意的加速度。

The surrogate matrix methodology delivers low-cost approximations of matrices (i.e., surrogate matrices) which are normally computed in Galerkin methods via element-scale quadrature formulas. In this paper, the methodology is applied to a number of model problems in wave mechanics treated in the Galerkin isogeometic setting. Herein, the resulting surrogate methods are shown to significantly reduce the assembly time in high frequency wave propagation problems. In particular, the assembly time is reduced with negligible loss in solution accuracy. This paper also extends the scope of previous articles in its series by considering multi-patch discretizations of time-harmonic, transient, and nonlinear PDEs as particular use cases of the methodology. Our a priori error analysis for the Helmholtz equation demonstrates that the additional consistency error introduced by the presence of surrogate matrices is independent of the wave number. In addition, our floating point analysis establishes that the computational complexity of the methodology compares favorably to other contemporary fast assembly techniques for isogeometric methods. Our numerical experiments demonstrate clear performance gains for time-harmonic problems, both with and without the presence of perfectly matched layers. Notable speed-ups are also presented for a transient problem with a compressible neo-Hookean material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源