论文标题
温度电阻率在零温度的极限下,从时间重新聚集软模式
Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode
论文作者
论文摘要
相关电子化合物的“奇怪金属”行为的最令人困惑的方面是,温度电阻率中的线性通常延伸至低温,低于天然微观能量尺度。我们考虑最近在具有随机最近邻邻交换的大尺寸晶格中的电子模型中提出的临界点(或阶段)。关键是在Sachdev-Ye-Kitaev模型的类别中,并且表现出时间重新聚集软模式,代表双全息理论中的重力。我们计算出具有SU($ M $)自旋对称性的$ M $限制的大型$ M $限制,并发现主要温度依赖性来自此软模式。电阻率在临界点处的温度下降至零温度,其共同效率与残余电阻率的乘积和线性在温度特异性热量中的平均乘积成正比。我们认为,重新聚集软模式的时间为解决奇怪的金属难题提供了一种有希望的通用机制。
The most puzzling aspect of the 'strange metal' behavior of correlated electron compounds is that the linear in temperature resistivity often extends down to low temperatures, lower than natural microscopic energy scales. We consider recently proposed deconfined critical points (or phases) in models of electrons in large dimension lattices with random nearest-neighbor exchange interactions. The criticality is in the class of Sachdev-Ye-Kitaev models, and exhibits a time reparameterization soft mode representing gravity in dual holographic theories. We compute the low temperature resistivity in a large $M$ limit of models with SU($M$) spin symmetry, and find that the dominant temperature dependence arises from this soft mode. The resistivity is linear in temperature down to zero temperature at the critical point, with a co-efficient universally proportional to the product of the residual resistivity and the co-efficient of the linear in temperature specific heat. We argue that the time reparameterization soft mode offers a promising and generic mechanism for resolving the strange metal puzzle.