论文标题

学习使用活跃的神经大满贯探索

Learning to Explore using Active Neural SLAM

论文作者

Chaplot, Devendra Singh, Gandhi, Dhiraj, Gupta, Saurabh, Gupta, Abhinav, Salakhutdinov, Ruslan

论文摘要

这项工作提出了一种模块化和分层的方法,用于学习探索3D环境的政策,称为“主动神经猛击”。我们的方法通过使用具有学识渊博的SLAM模块以及全球和本地政策的分析路径计划者,利用经典方法和基于学习的方法的优势。学习的使用为输入方式(在大型模块中)提供了灵活性,利用世界的结构规律(在全球政策中),并为国家估计中的错误(在本地政策中)提供了稳健性。这种学习在每个模块中的使用都保留了其好处,同时,分层分解和模块化训练使我们能够避开与培训端到端政策相关的高样本复杂性。我们在视觉和物理逼真的模拟3D环境中进行的实验证明了我们方法对过去的学习和基于几何的方法的有效性。提出的模型也可以轻松地转移到PointGoal任务上,并且是CVPR 2019 Habitat PointGoal Navigation Challenge的获胜条目。

This work presents a modular and hierarchical approach to learn policies for exploring 3D environments, called `Active Neural SLAM'. Our approach leverages the strengths of both classical and learning-based methods, by using analytical path planners with learned SLAM module, and global and local policies. The use of learning provides flexibility with respect to input modalities (in the SLAM module), leverages structural regularities of the world (in global policies), and provides robustness to errors in state estimation (in local policies). Such use of learning within each module retains its benefits, while at the same time, hierarchical decomposition and modular training allow us to sidestep the high sample complexities associated with training end-to-end policies. Our experiments in visually and physically realistic simulated 3D environments demonstrate the effectiveness of our approach over past learning and geometry-based approaches. The proposed model can also be easily transferred to the PointGoal task and was the winning entry of the CVPR 2019 Habitat PointGoal Navigation Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源