论文标题
模型不确定性量化可靠的深视力结构健康监测
Model Uncertainty Quantification for Reliable Deep Vision Structural Health Monitoring
论文作者
论文摘要
在过去的十年中,利用深度学习的计算机视觉取得了巨大的成功。尽管在最近的文献中现有的深层模型表现出色,但模型的可靠性程度仍然未知。结构性健康监测(SHM)是结构安全和可持续性的至关重要任务,因此预测错误可能会带来致命的结果。本文提出了贝叶斯对深视觉SHM模型的推断,其中可以使用Monte Carlo辍学抽样来量化不确定性。使用贝叶斯推断研究了三个独立的裂缝,局部损害识别和桥梁成分检测的案例研究。除了更好的预测结果外,两个不确定性指标的平均级别软差异和熵也与错误分类相关。虽然不确定性指标可用于触发人类干预并有可能改善预测结果,但对不确定性面罩的解释可能具有挑战性。因此,引入替代模型以将不确定性作为输入,以便可以进一步提高性能。本文中提出的方法可以应用于未来的深视觉SHM框架,以将模型不确定性纳入检查过程中。
Computer vision leveraging deep learning has achieved significant success in the last decade. Despite the promising performance of the existing deep models in the recent literature, the extent of models' reliability remains unknown. Structural health monitoring (SHM) is a crucial task for the safety and sustainability of structures, and thus prediction mistakes can have fatal outcomes. This paper proposes Bayesian inference for deep vision SHM models where uncertainty can be quantified using the Monte Carlo dropout sampling. Three independent case studies for cracks, local damage identification, and bridge component detection are investigated using Bayesian inference. Aside from better prediction results, mean class softmax variance and entropy, the two uncertainty metrics, are shown to have good correlations with misclassifications. While the uncertainty metrics can be used to trigger human intervention and potentially improve prediction results, interpretation of uncertainty masks can be challenging. Therefore, surrogate models are introduced to take the uncertainty as input such that the performance can be further boosted. The proposed methodology in this paper can be applied to future deep vision SHM frameworks to incorporate model uncertainty in the inspection processes.