论文标题
最大程度地降低混合式公共交通的能源使用用于固定公路服务
Minimizing Energy Use of Mixed-Fleet Public Transit for Fixed-Route Service
论文作者
论文摘要
负担得起的公共交通服务对社区至关重要,因为它们使居民能够获得就业,教育和其他服务。不幸的是,提供广泛覆盖范围的公交服务往往会遭受相对较低的利用率,这会导致每英里每英里乘客使用燃料较高,从而导致高运营成本和环境影响。电动汽车(EV)可以降低能源成本和环境影响,但是由于电动汽车的前期成本高,大多数公共交通机构都必须与常规内燃机车辆结合使用。为了充分利用这种混合的车辆,运输机构需要优化路线任务和充电时间表,这给大型公交网络带来了一个具有挑战性的问题。我们引入了一种新颖的问题制定,以最大程度地减少燃料和用电,通过分配车辆进行过境旅行并安排它们进行充电,同时为现有的固定式路由运输时间表提供。我们提出了一个用于最佳分配和调度的整数程序,并建议针对较大网络提供多项式的启发式启发式和元式算法。我们使用从运输车辆收集的操作数据评估了田纳西州查塔努加的公共交通服务算法。我们的结果表明,所提出的算法是可扩展的,可以减少能源利用,从而减少环境影响和运营成本。对于查塔努加(Chattanooga),拟议的算法每年可以节省145,635美元的能源成本和576.7公吨的二氧化碳排放。
Affordable public transit services are crucial for communities since they enable residents to access employment, education, and other services. Unfortunately, transit services that provide wide coverage tend to suffer from relatively low utilization, which results in high fuel usage per passenger per mile, leading to high operating costs and environmental impact. Electric vehicles (EVs) can reduce energy costs and environmental impact, but most public transit agencies have to employ them in combination with conventional, internal-combustion engine vehicles due to the high upfront costs of EVs. To make the best use of such a mixed fleet of vehicles, transit agencies need to optimize route assignments and charging schedules, which presents a challenging problem for large transit networks. We introduce a novel problem formulation to minimize fuel and electricity use by assigning vehicles to transit trips and scheduling them for charging, while serving an existing fixed-route transit schedule. We present an integer program for optimal assignment and scheduling, and we propose polynomial-time heuristic and meta-heuristic algorithms for larger networks. We evaluate our algorithms on the public transit service of Chattanooga, TN using operational data collected from transit vehicles. Our results show that the proposed algorithms are scalable and can reduce energy use and, hence, environmental impact and operational costs. For Chattanooga, the proposed algorithms can save $145,635 in energy costs and 576.7 metric tons of CO2 emission annually.