论文标题
芝麻:通过添加,操纵或擦除对象对场景的语义编辑
SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects
论文作者
论文摘要
图像生成的最新进展为语义图像编辑提供了强大的工具。但是,现有方法可以在单个图像上运行,也可以需要大量其他信息。他们无法处理完整的编辑操作集,即对语义概念的操纵或删除。为了解决这些局限性,我们提出了芝麻,这是一种新颖的生成器 - 分歧剂对,用于通过添加,操纵或擦除对象来对场景进行语义编辑。在我们的设置中,用户提供要编辑的区域的语义标签,并合成了相应的像素。与以前采用歧视器的先前方法相反,该方法琐碎地串联语义和图像作为输入,芝麻歧视者由两个输入流组成,这些输入流独立处理图像及其语义,使用后者来操纵前者的结果。我们在各种数据集上评估了我们的模型,并在两个任务上报告了最先进的性能:(a)图像操纵和(b)在语义标签上的图像生成。
Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are not capable of handling the complete set of editing operations, that is addition, manipulation or removal of semantic concepts. To address these limitations, we propose SESAME, a novel generator-discriminator pair for Semantic Editing of Scenes by Adding, Manipulating or Erasing objects. In our setup, the user provides the semantic labels of the areas to be edited and the generator synthesizes the corresponding pixels. In contrast to previous methods that employ a discriminator that trivially concatenates semantics and image as an input, the SESAME discriminator is composed of two input streams that independently process the image and its semantics, using the latter to manipulate the results of the former. We evaluate our model on a diverse set of datasets and report state-of-the-art performance on two tasks: (a) image manipulation and (b) image generation conditioned on semantic labels.