论文标题

深域分解方法:椭圆问题

Deep Domain Decomposition Method: Elliptic Problems

论文作者

Li, Wuyang, Xiang, Xueshuang, Xu, Yingxiang

论文摘要

本文提出了一种基于深度学习的域分解方法(DEEPDDM),该方法利用深神经网络(DNN)将除以域分解方法(DDM)划分的子问题离散,以求解偏微分方程(PDE)。使用DNN来求解PDE是一个物理信息的学习问题,其目标涉及两个术语域项和边界项,它们分别使所需的解决方案满足PDE和相应的边界条件。 DEEPDDM将通过调整DNN求解每个子问题的边界项来交换DDM中界面的子问题信息。 DeepDD受益于将DNN用于PDE的简单实现和无网格的策略,将简化DDM的实现,并使DDM更灵活地对于复杂的PDE,例如那些在计算域中具有复杂接口的人。本文将首先调查使用DEEPDM用于椭圆问题的性能,包括模型问题和接口问题。数值示例表明,DEEPDM表现出与常规DDM一致的行为:DEEPDDM的迭代次数与网络体系结构无关,并且随着重叠大小的增加而减小。 DeepDM在椭圆问题上的表现将鼓励我们进一步调查其其他类型的PDE的性能,并可能为通过深度学习提供新的见解,以改善PDE求解器。

This paper proposes a deep-learning-based domain decomposition method (DeepDDM), which leverages deep neural networks (DNN) to discretize the subproblems divided by domain decomposition methods (DDM) for solving partial differential equations (PDE). Using DNN to solve PDE is a physics-informed learning problem with the objective involving two terms, domain term and boundary term, which respectively make the desired solution satisfy the PDE and corresponding boundary conditions. DeepDDM will exchange the subproblem information across the interface in DDM by adjusting the boundary term for solving each subproblem by DNN. Benefiting from the simple implementation and mesh-free strategy of using DNN for PDE, DeepDDM will simplify the implementation of DDM and make DDM more flexible for complex PDE, e.g., those with complex interfaces in the computational domain. This paper will firstly investigate the performance of using DeepDDM for elliptic problems, including a model problem and an interface problem. The numerical examples demonstrate that DeepDDM exhibits behaviors consistent with conventional DDM: the number of iterations by DeepDDM is independent of network architecture and decreases with increasing overlapping size. The performance of DeepDDM on elliptic problems will encourage us to further investigate its performance for other kinds of PDE and may provide new insights for improving the PDE solver by deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源