论文标题

D-Srgan:具有生成对抗网络的DEM超分辨率

D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks

论文作者

Demiray, Bekir Z, Sit, Muhammed, Demir, Ibrahim

论文摘要

LIDAR(光检测和范围)是一种光学遥感技术,可测量传感器和对象之间的距离,以及反射的能量与物体之间的反射能量。多年来,LiDAR数据已被用作数字高程模型(DEM)的主要来源。 DEM已用于多种应用,例如道路提取,水文建模,洪水映射和表面分析。洪水的许多研究表明,随着应用程序中的输入提高了总体可靠性和准确性,因此使用高分辨率DEM。尽管高分辨率DEM很重要,但由于技术限制或数据收集成本,美国和世界的许多领域都无法获得高分辨率DEM。随着图形处理单元(GPU)和新型算法的最新发展,深度学习技术已从高分辨率数据集中的学习特征方面具有吸引力。已经提出了许多新方法,例如生成对抗网络(GAN),以创建智能模型来纠正和增强大规模数据集。在本文中,基于GAN的模型是受单个图像超分辨率方法启发的,以增加给定DEM数据集的空间分辨率高达4次,而没有与数据相关的其他信息。

LIDAR (light detection and ranging) is an optical remote-sensing technique that measures the distance between sensor and object, and the reflected energy from the object. Over the years, LIDAR data has been used as the primary source of Digital Elevation Models (DEMs). DEMs have been used in a variety of applications like road extraction, hydrological modeling, flood mapping, and surface analysis. A number of studies in flooding suggest the usage of high-resolution DEMs as inputs in the applications improve the overall reliability and accuracy. Despite the importance of high-resolution DEM, many areas in the United States and the world do not have access to high-resolution DEM due to technological limitations or the cost of the data collection. With recent development in Graphical Processing Units (GPU) and novel algorithms, deep learning techniques have become attractive to researchers for their performance in learning features from high-resolution datasets. Numerous new methods have been proposed such as Generative Adversarial Networks (GANs) to create intelligent models that correct and augment large-scale datasets. In this paper, a GAN based model is developed and evaluated, inspired by single image super-resolution methods, to increase the spatial resolution of a given DEM dataset up to 4 times without additional information related to data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源