论文标题

生物医学图像分割的胶囊

Capsules for Biomedical Image Segmentation

论文作者

LaLonde, Rodney, Xu, Ziyue, Irmakci, Ismail, Jain, Sanjay, Bagci, Ulas

论文摘要

我们的工作在文献中首次将胶囊网络的使用扩展到对象分割的任务。通过引入局部约束的路由和转换矩阵共享,这是可能的,从而减少了参数/内存负担,并允许在大分辨率下对对象进行分割。为了弥补约束路由中全局信息的损失,我们提出了“反向扭转”胶囊的概念,以创建一个名为Segcaps的深层编码器式样式网络。我们将蒙版的重建正规化扩展到分割任务,并对我们方法的每个组件进行彻底的消融实验。所提出的卷积 - 卷积胶囊网络SEGCAPS显示了最新的结果,同时使用了流行分割网络的一小部分参数。为了验证我们提出的方法,我们执行了从临床和临床前胸腔计算机断层扫描(CT)扫描中分割病理肺的实验,并从磁共振成像(MRI)扫描人类受试者的大腿上分割了肌肉和脂肪(脂肪)组织。值得注意的是,我们在肺部分割方面的实验代表了文献中最大的病理肺部分割研究,在该研究中,我们在五个极具挑战性的数据集中进行了实验,其中包含临床和临床前受试者,以及近2000次计算的计算学扫描。我们新开发的细分平台优于所有数据集的其他方法,同时利用流行的U-NET中不到5%的参数进行生物医学图像分割。此外,我们展示了胶囊概括自然图像的旋转/反射的能力。

Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of "deconvolutional" capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects' thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules' ability to generalize to unseen rotations/reflections on natural images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源