论文标题

多路复用网络中链接预测的启发式方法

Heuristics for Link Prediction in Multiplex Networks

论文作者

Tillman, Robert E., Potluru, Vamsi K., Chen, Jiahao, Reddy, Prashant, Veloso, Manuela

论文摘要

在网络分析中,链接预测或实体之间未来或丢失连接的推断是一个充分研究的问题。在具有单一类型连接的普通网络中存在众多启发式信息。但是,多路复用网络中的链接预测或具有多种连接类型的网络并不是一个充分理解的问题。我们提出了一个新颖的通用框架和三个用于多重网络链接预测的启发式范围,这些链接预测是简单,可解释的,并利用了许多现实世界网络中存在的丰富连接类型相关结构。我们进一步得出了一个理论阈值,用于确定何时根据与Erdos-Renyi随机图重叠的链接数量使用不同的连接类型。通过模拟和现实世界的科学合作,运输和全球贸易网络的实验,我们证明了拟议的启发式方法表明,与连接类型相关结构的丰富性相关性结构的丰富性表现出了提高的性能,并明显优于其与单个连接类型的普通网络基线启发式方法。

Link prediction, or the inference of future or missing connections between entities, is a well-studied problem in network analysis. A multitude of heuristics exist for link prediction in ordinary networks with a single type of connection. However, link prediction in multiplex networks, or networks with multiple types of connections, is not a well understood problem. We propose a novel general framework and three families of heuristics for multiplex network link prediction that are simple, interpretable, and take advantage of the rich connection type correlation structure that exists in many real world networks. We further derive a theoretical threshold for determining when to use a different connection type based on the number of links that overlap with an Erdos-Renyi random graph. Through experiments with simulated and real world scientific collaboration, transportation and global trade networks, we demonstrate that the proposed heuristics show increased performance with the richness of connection type correlation structure and significantly outperform their baseline heuristics for ordinary networks with a single connection type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源