论文标题

ICSCREAM方法:使用筛选和MetAmodel在计算机实验中识别惩罚配置 - 热液压中的应用

The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel -- Applications in thermal-hydraulics

论文作者

Marrel, A., Iooss, Bertrand, Chabridon, V

论文摘要

在核事故分析中的风险评估框架中,使用与不确定输入变量的概率建模相关的最佳效率计算机代码可用于估计安全余量。这种不确定性定量研究的第一步通常是在其他输入参数的不确定性下,识别几个输入参数(称为````saceario Inputputs''''''''')的关键配置(或惩罚,在规定安全保证金的情况下进行惩罚)。但是,核工程中大多数计算机代码的巨大时间成本是与热湿度事故情景相关的理论,涉及开发高效的策略。这项工作着重于基于元模型的方法(即,是拟合小型模拟样本的数学模型)的机器学习算法。为了用非常大的输入来实现它,提出了一种特定的原始方法,称为ICSCREAM(使用筛选和Metamodel进行惩罚配置识别)。影响力投入的屏幕基于先进的全球灵敏度分析(HSIC重要性度量)。然后,按照场景输入,在贝叶斯框架内进行顺序结构合并并用于估算超过高级阈值的条件性概率。该方法的效率在两个高维输入(数百个数百个输入)的热损失案例中,相似的偶然偶然的偶然损失,该方法的效率是相似的。对于这两种用例,峰值覆层温度(PCT)上的研究人员和临界构型通过超过PCT的90%量式而定义。在这两种情况下,ICSCreamShodology允许仅使用大约一千个代码模拟,场景输入的影响及其关键价值领域来估计。

In the framework of risk assessment in nuclear accident analysis, best-estimatecomputer codes, associated to a probabilistic modeling of the uncertain input variables,are used to estimate safety margins. A first step in such uncertainty quantificationstudies is often to identify the critical configurations (or penalizing, in thesense of a prescribed safety margin) of several input parameters (called ``scenarioinputs''), under the uncertainty on the other input parameters. However, the largeCPU-time cost of most of the computer codes used in nuclear engineering, as theones related to thermal-hydraulic accident scenario simulations, involve to develophighly efficient strategies. This work focuses on machine learning algorithms bythe way of the metamodel-based approach (i.e., a mathematical model which is fittedon a small-size sample of simulations). To achieve it with a very large numberof inputs, a specific and original methodology, called ICSCREAM (Identificationof penalizing Configurations using SCREening And Metamodel), is proposed. Thescreening of influential inputs is based on an advanced global sensitivity analysistool (HSIC importance measures). A Gaussian process metamodel is then sequentiallybuilt and used to estimate, within a Bayesian framework, the conditionalprobabilities of exceeding a high-level threshold, according to the scenario inputs.The efficiency of this methodology is illustrated on two high-dimensional (arounda hundred inputs) thermal-hydraulic industrial cases simulating an accident of primarycoolant loss in a pressurized water reactor. For both use cases, the studyfocuses on the peak cladding temperature (PCT) and critical configurations aredefined by exceeding the 90%-quantile of PCT. In both cases, the ICSCREAMmethodology allows to estimate, by using only around one thousand of code simulations,the impact of the scenario inputs and their critical areas of values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源