论文标题
自然场景中的本地和全球关注的数学模型
A Mathematical Model of Local and Global Attention in Natural Scene Viewing
论文作者
论文摘要
了解凝视控制的决策过程是认知神经科学的一个重要问题,其应用在从心理学到计算机视觉的各个领域的应用中。选择即将到来的扫视目标的决定可以作为两个状态之间的选择过程进行构架:观察者是否应该进一步检查当前目光位置(当地注意力)附近的信息,还是继续探索给定场景的其他补丁(全球注意力)?在这里,我们提出并研究了一个数学模型,该数学模型是通过在场景观看过程中切换这两个注意状态的动机。该模型源自产生逼真的眼动行为的最小假设集。我们根据模型的可能性函数实现了一种贝叶斯方法来推理模型参数推理。为了简化推论,我们应用了允许使用共轭先验并构建有效的Gibbs采样器的数据增强方法。事实证明,这种方法在数值上是有效的,并且允许拟合扫视统计的个体差异。因此,我们的建模方法的主要贡献是两倍。首先,我们为场景观看中的扫视生成提出了一种新模型。其次,我们证明了在扫描路径建模领域中使用贝叶斯推断的新方法。
Understanding the decision process underlying gaze control is an important question in cognitive neuroscience with applications in diverse fields ranging from psychology to computer vision. The decision for choosing an upcoming saccade target can be framed as a selection process between two states: Should the observer further inspect the information near the current gaze position (local attention) or continue with exploration of other patches of the given scene (global attention)? Here we propose and investigate a mathematical model motivated by switching between these two attentional states during scene viewing. The model is derived from a minimal set of assumptions that generates realistic eye movement behavior. We implemented a Bayesian approach for model parameter inference based on the model's likelihood function. In order to simplify the inference, we applied data augmentation methods that allowed the use of conjugate priors and the construction of an efficient Gibbs sampler. This approach turned out to be numerically efficient and permitted fitting interindividual differences in saccade statistics. Thus, the main contribution of our modeling approach is two--fold; first, we propose a new model for saccade generation in scene viewing. Second, we demonstrate the use of novel methods from Bayesian inference in the field of scan path modeling.