论文标题

图高速公路网络

Graph Highway Networks

论文作者

Xin, Xin, Karatzoglou, Alexandros, Arapakis, Ioannis, Jose, Joemon M.

论文摘要

图形卷积网络(GCN)由于其有效性和效率而广泛用于学习图表。但是,它们遭受了臭名昭著的过度平滑问题的困扰,当许多(> 3)图卷积层堆叠时,所学到的密集连接节点的表示表示与相似的向量。在本文中,我们认为在GCN中使用的符合性技巧会导致过度均匀的信息传播,这是过度光滑的来源。为了解决这个问题,我们建议使用门控单元在GCN学习过程中自动平衡同质性和异质性之间的权衡平衡。门控单元作为直接高速公路,以在特征传播后从节点本身中保持异质信息。该设计使GHNET能够在无需过度光滑的情况下实现每个节点的更大的接收场,从而访问更多图形连接信息。基准数据集的实验结果证明了GHNET优于GCN和相关模型。

Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency. However, they suffer from the notorious over-smoothing problem, in which the learned representations of densely connected nodes converge to alike vectors when many (>3) graph convolutional layers are stacked. In this paper, we argue that there-normalization trick used in GCN leads to overly homogeneous information propagation, which is the source of over-smoothing. To address this problem, we propose Graph Highway Networks(GHNet) which utilize gating units to automatically balance the trade-off between homogeneity and heterogeneity in the GCN learning process. The gating units serve as direct highways to maintain heterogeneous information from the node itself after feature propagation. This design enables GHNet to achieve much larger receptive fields per node without over-smoothing and thus access to more of the graph connectivity information. Experimental results on benchmark datasets demonstrate the superior performance of GHNet over GCN and related models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源