论文标题
使用随时间变化的遭遇网络对流行病进行建模
Modeling Epidemic Spreading through Public Transit using Time-Varying Encounter Network
论文作者
论文摘要
公共交通(PT)网络中的乘客联系可能是传染病传播的关键中介。本文提出了一个随时间变化的加权PT遭遇网络,以模拟通过PT系统的传染病扩散。还考虑了地方和全球层面的社交活动。我们选择2019年冠状病毒病的流行病学特征(Covid-19)作为案例研究以及新加坡的智能卡数据,以在大都市一级说明该模型。得出了可扩展且轻巧的理论框架,以捕获随时间变化和异质的网络结构,该结构能够以低计算成本在整个人群水平上解决问题。评估了公共卫生方面和运输方面的不同控制政策。我们发现,人们的预防行为是控制流行病传播的最有效措施之一。从运输端,公交路线的部分关闭有助于减速,但不能完全包含流行病的扩散。使用智能卡数据识别“有影响力的乘客”并在早期隔离它们也可以有效地减少流行病的扩散。
Passenger contact in public transit (PT) networks can be a key mediate in the spreading of infectious diseases. This paper proposes a time-varying weighted PT encounter network to model the spreading of infectious diseases through the PT systems. Social activity contacts at both local and global levels are also considered. We select the epidemiological characteristics of coronavirus disease 2019 (COVID-19) as a case study along with smart card data from Singapore to illustrate the model at the metropolitan level. A scalable and lightweight theoretical framework is derived to capture the time-varying and heterogeneous network structures, which enables to solve the problem at the whole population level with low computational costs. Different control policies from both the public health side and the transportation side are evaluated. We find that people's preventative behavior is one of the most effective measures to control the spreading of epidemics. From the transportation side, partial closure of bus routes helps to slow down but cannot fully contain the spreading of epidemics. Identifying "influential passengers" using the smart card data and isolating them at an early stage can also effectively reduce the epidemic spreading.