论文标题
通过coend conculus开放图
Open Diagrams via Coend Calculus
论文作者
论文摘要
通常将单体类别中的形态解释为过程,并以图形方式将其描述为平方盒。在实践中,我们面临着解释在单体类别方面应该代表的非方面框的问题,更重要的是,它们应该如何组成。这种情况的例子包括镜头或学习者。我们提出了这些非平方盒的描述,我们使用分配器的单层生物构图,称其为开放式图。然后,可以使用图形coend演算来推理开放图及其组成。
Morphisms in a monoidal category are usually interpreted as processes, and graphically depicted as square boxes. In practice, we are faced with the problem of interpreting what non-square boxes ought to represent in terms of the monoidal category and, more importantly, how should they be composed. Examples of this situation include lenses or learners. We propose a description of these non-square boxes, which we call open diagrams, using the monoidal bicategory of profunctors. A graphical coend calculus can then be used to reason about open diagrams and their compositions.