论文标题

在给定独立数$α$的双块图的光谱半径上

On the spectral radius of bi-block graphs with given independence number $α$

论文作者

Das, Joyentanuj, Mohanty, Sumit

论文摘要

如果其每个块都是完整的两部分图,则将连接的图称为Bi-block图。令$ \ mathcal {b}(\ Mathbf {k},α)$为$ \ Mathbf {k} $ vertices上的Bi-Block Graph类,具有给定的独立号码$α$。很容易看出每个Biblock图都是两部分图。对于$ \ Mathbf {k} $ vertices上的两分之二图$ g $,独立数$α(g)$满足$ \ ceil*{\ frac {\ frac {\ mathbf {k}}} {2}} {2}} \ leqα(g)\ leq \ leq \ leq \ leq \ mathbf {k} k} -1 $。在本文中,我们证明了所有图中的最大光谱半径$ρ(g)$ in $ \ \ \ m nathcal {b}(\ Mathbf {k},α)$,用于完整的双位图$ k_ {α,\ Mathbf {k} -a}-α} $。

A connected graph is called a bi-block graph if each of its blocks is a complete bipartite graph. Let $\mathcal{B}(\mathbf{k}, α)$ be the class of bi-block graph on $\mathbf{k}$ vertices with given independence number $α$. It is easy to see that every bi-block graph is a bipartite graph. For a bipartite graph $G$ on $\mathbf{k}$ vertices, the independence number $α(G)$ satisfies $\ceil*{\frac{\mathbf{k}}{2}} \leq α(G) \leq \mathbf{k}-1$. In this article, we prove that the maximum spectral radius $ρ(G)$ among all graphs $G$ in $\mathcal{B}(\mathbf{k}, α)$, is uniquely attained for the complete bipartite graph $K_{α, \mathbf{k}-α}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源