论文标题
在平坦的时空中,嵌入重力作为场理论的规范描述
Canonical description for formulation of embedding gravity as a field theory in a flat spacetime
论文作者
论文摘要
我们考虑了重力方法,其中四维弯曲的时空由较高尺寸的平坦Minkowski空间中的表面表示。在对这种方法的思想和结果进行了简短的概述之后,我们集中于所谓分裂重力的研究,这种描述的一种形式,在这种描述中,环境平坦时空中一组标量场的恒定值表面定义了嵌入式表面。我们构建了一种不变的W.R.T.的动作形式该理论的所有对称性。我们构建了规范形式主义以分裂重力。结果理论证明没有限制。但是,该理论的哈密顿量是规范变量的隐含功能。最后,我们讨论了这种理论的路径积分量化。
We consider the approach to gravity in which four-dimensional curved spacetime is represented by a surface in a flat Minkowski space of higher dimension. After a short overview of the ideas and results of such an approach we concentrate on the study of the so-called splitting gravity, a form of this description in which constant value surface of a set of scalar fields in the ambient flat space-time defines the embedded surface. We construct a form of action which is invariant w.r.t. all symmetries of this theory. We construct the canonical formalism for splitting gravity. The resulting theory turns out to be free of constraints. However, the Hamiltonian of this theory is an implicit function of canonical variables. Finally, we discuss the path integral quantization of such a theory.