论文标题
迈向开放式域适应的可继承模型
Towards Inheritable Models for Open-Set Domain Adaptation
论文作者
论文摘要
视觉识别任务的域适应性(DA)取得了巨大进展。特别是,开放式DA引起了广泛的关注,其中目标域包含其他看不见的类别。现有的开放式DA方法要求访问标记的源数据集以及未标记的目标实例。但是,在数据共享由于其专有性质或隐私问题而受到限制的情况下,这种对共存源和目标数据的依赖非常不切实际。解决此问题时,我们引入了一个实用的DA范式,其中使用源训练的模型来促进将来没有源数据集的适应。为此,我们将知识的遗传性正式化为一种新颖的概念,并提出了一种简单而有效的解决方案,以实现适合上述实用范式的遗传模型。此外,我们提出了一种量化遗传性的客观方法,即使在没有源数据的情况下,也可以为给定目标域选择最合适的源模型。我们提供理论见解,然后进行彻底的经验评估,证明了最新的开放式域适应性绩效。
There has been a tremendous progress in Domain Adaptation (DA) for visual recognition tasks. Particularly, open-set DA has gained considerable attention wherein the target domain contains additional unseen categories. Existing open-set DA approaches demand access to a labeled source dataset along with unlabeled target instances. However, this reliance on co-existing source and target data is highly impractical in scenarios where data-sharing is restricted due to its proprietary nature or privacy concerns. Addressing this, we introduce a practical DA paradigm where a source-trained model is used to facilitate adaptation in the absence of the source dataset in future. To this end, we formalize knowledge inheritability as a novel concept and propose a simple yet effective solution to realize inheritable models suitable for the above practical paradigm. Further, we present an objective way to quantify inheritability to enable the selection of the most suitable source model for a given target domain, even in the absence of the source data. We provide theoretical insights followed by a thorough empirical evaluation demonstrating state-of-the-art open-set domain adaptation performance.