论文标题

检测个人跨个体功能性脑网络中的动态社区结构:多层方法

Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach

论文作者

Ting, Chee-Ming, Samdin, S. Balqis, Tang, Meini, Ombao, Hernando

论文摘要

我们提出了一个统一的统计框架,用于表征大脑功能网络的社区结构,该结构随着时间的流逝而捕获了个人和进化的变化。现有的社区检测方法仅着眼于动态网络的单人物分析;尽管最近对多个受试者分析的扩展仅限于静态网络。为了克服这些局限性,我们提出了一个多主体,马尔可夫开关的随机块模型(MSS-SBM),以识别一组个人的大脑社区组织中与状态相关的变化。我们首先制定了SBM的多层扩展,以描述时间依赖性的,多主体的大脑网络。我们开发了一种拟合多层SBM的新型程序,该程序以多层模块化最大化为基础,该模块化最大化可以同时发现所有层(主题)的共同社区分区。通过使用动态马尔可夫切换过程进行增强,我们提出的方法能够捕获一组不同的,反复出现的时间状态,相对于主体之间的社区间相互作用及其之间的变化点。仿真显示了MSS-SBM对多层网络对动态社区制度的准确跟踪。在任务fMRI上的应用揭示了有意义的非理想性脑社区图案,例如,在小组级别上的核心 - 周期结构与语言理解和运动功能相关,表明它们在复杂信息集成中的推定作用。我们检测到的模块连通性的动态重新配置是由于不同的任务需求引起的,并确定了在不同任务条件上的内部和社区间连接的独特配置文件。提出的多层网络表示提供了一种原则性的方法,可以检测跨受试者大脑网络中的同步动态模块。

We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源