论文标题
反馈重复进行视频压缩的自动编码器
Feedback Recurrent Autoencoder for Video Compression
论文作者
论文摘要
深度生成建模的最新进展已实现了高维数据分布的有效建模,并为解决数据压缩问题打开了新的视野。具体而言,基于自动编码器的学术图像或视频压缩解决方案正在成为传统方法的强大竞争者。在这项工作中,我们建议基于常见且研究良好的组件的新网络体系结构,以在低延迟模式下进行学习的视频压缩。我们的方法在高分辨率UVG数据集上产生了最先进的MS-SSSIM/速率性能,其中包括学习的视频压缩方法和经典视频压缩方法(H.265和H.264)在流媒体应用程序的兴趣范围内。此外,我们通过其潜在概率图形模型的镜头对现有方法进行分析。最后,我们指出了在经验评估中观察到的时间一致性和变色的问题,并提出了指示以减轻这些问题。
Recent advances in deep generative modeling have enabled efficient modeling of high dimensional data distributions and opened up a new horizon for solving data compression problems. Specifically, autoencoder based learned image or video compression solutions are emerging as strong competitors to traditional approaches. In this work, We propose a new network architecture, based on common and well studied components, for learned video compression operating in low latency mode. Our method yields state of the art MS-SSIM/rate performance on the high-resolution UVG dataset, among both learned video compression approaches and classical video compression methods (H.265 and H.264) in the rate range of interest for streaming applications. Additionally, we provide an analysis of existing approaches through the lens of their underlying probabilistic graphical models. Finally, we point out issues with temporal consistency and color shift observed in empirical evaluation, and suggest directions forward to alleviate those.