论文标题
虚拟荧光显微镜的物理增强机器学习
Physics-enhanced machine learning for virtual fluorescence microscopy
论文作者
论文摘要
本文介绍了一种用于虚拟荧光显微镜的数据驱动显微镜设计的新方法。我们的结果表明,通过在深卷积神经网络的第一层中包括一个照明模型,可以学习特定于任务的LED模式,从而实质上提高了从未染色的传输显微镜图像中推断荧光图像信息的能力。我们在两个不同的实验设置上验证了我们的方法,这些设置具有不同的宏伟和样本类型,与传统的照明方法相比,表现出一致的性能提高。此外,为了理解学到的照明对推理任务的重要性,我们改变了荧光图像目标的动态范围(从一位到七个位),并表明,学习模式的改进范围随目标的信息内容而增加。这项工作证明了可编程光学元素在实现更好的机器学习算法性能以及对下一代机器控制成像系统的物理见解方面的力量。
This paper introduces a new method of data-driven microscope design for virtual fluorescence microscopy. Our results show that by including a model of illumination within the first layers of a deep convolutional neural network, it is possible to learn task-specific LED patterns that substantially improve the ability to infer fluorescence image information from unstained transmission microscopy images. We validated our method on two different experimental setups, with different magnifications and different sample types, to show a consistent improvement in performance as compared to conventional illumination methods. Additionally, to understand the importance of learned illumination on inference task, we varied the dynamic range of the fluorescent image targets (from one to seven bits), and showed that the margin of improvement for learned patterns increased with the information content of the target. This work demonstrates the power of programmable optical elements at enabling better machine learning algorithm performance and at providing physical insight into next generation of machine-controlled imaging systems.