论文标题

指数级易渗透中的右尾中等偏差

Right-tail moderate deviations in the exponential last-passage percolation

论文作者

Emrah, Elnur, Janjigian, Chris, Seppäläinen, Timo

论文摘要

我们研究了指数角增长模型中的中度偏差,无论是在散装设置还是增量设置。主要结果是在最后一个通行时间和增量平台过程的出口点上的尖锐右尾边界。该参数利用固定版本的计算以及由于E.雨而生成函数身份的力矩,为此我们提供了简短的概率证明。作为偏差边界的应用,我们在Busemann功能和竞争接口限制中的分布收敛速度上得出了上限。

We study moderate deviations in the exponential corner growth model, both in the bulk setting and the increment-stationary setting. The main results are sharp right-tail bounds on the last-passage time and the exit point of the increment-stationary process. The arguments utilize calculations with the stationary version and a moment generating function identity due to E. Rains, for which we give a short probabilistic proof. As applications of the deviation bounds, we derive upper bounds on the speed of distributional convergence in the Busemann function and competition interface limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源