论文标题

NPINNS:用于参数化的非本地通用laplacian操作员的非本地物理信息信息网络。算法和应用程序

nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications

论文作者

Pang, Guofei, D'Elia, Marta, Parks, Michael, Karniadakis, George E.

论文摘要

物理知识的神经网络(PINN)在基于稀疏,嘈杂,非结构化和多效率数据的差分方程和积分方程方面有效解决反问题。 Pinns将所有可用信息纳入损失函数,从而将原始问题重新塑造到优化问题中。在本文中,我们将PINN扩展到了积分方程的参数和功能推断,例如非局部泊松和非局部湍流模型,我们将其称为非局部PINNS(NPINNS)。该论文的贡献是三倍。首先,我们提出了一个统一的非局部运算符,该运算符将经典的拉普拉斯作为操作员参数之一,非局部相互作用半径$δ$归为零,而分数laplacian as $Δ$转到了Infinity。该通用操作员构成了经典的拉普拉斯和分数拉普拉斯运算符的超级设定,因此有可能适合广泛的数据集。我们提供有关$δ$的理论收敛速率,并通过数值实验对其进行验证。其次,我们使用npinns估计两个参数,$δ$和$α$。产生多个(良好)局部最小值的损耗函数的强非跨性别性揭示了模仿现象的操作员的出现:不同的估计参数对可能会产生多个具有可比精度的溶液。第三,我们提出了另一个具有空间可变顺序$α(y)$的非局部运算符,这更适合对湍流couette流进行建模。我们的结果表明,NPINN可以共同推断此功能以及$δ$。同样,这些参数在雷诺数数字方面表现出普遍的行为,这一发现有助于我们理解壁结合的湍流中的非本地相互作用。

Physics-informed neural networks (PINNs) are effective in solving inverse problems based on differential and integral equations with sparse, noisy, unstructured, and multi-fidelity data. PINNs incorporate all available information into a loss function, thus recasting the original problem into an optimization problem. In this paper, we extend PINNs to parameter and function inference for integral equations such as nonlocal Poisson and nonlocal turbulence models, and we refer to them as nonlocal PINNs (nPINNs). The contribution of the paper is three-fold. First, we propose a unified nonlocal operator, which converges to the classical Laplacian as one of the operator parameters, the nonlocal interaction radius $δ$ goes to zero, and to the fractional Laplacian as $δ$ goes to infinity. This universal operator forms a super-set of classical Laplacian and fractional Laplacian operators and, thus, has the potential to fit a broad spectrum of data sets. We provide theoretical convergence rates with respect to $δ$ and verify them via numerical experiments. Second, we use nPINNs to estimate the two parameters, $δ$ and $α$. The strong non-convexity of the loss function yielding multiple (good) local minima reveals the occurrence of the operator mimicking phenomenon: different pairs of estimated parameters could produce multiple solutions of comparable accuracy. Third, we propose another nonlocal operator with spatially variable order $α(y)$, which is more suitable for modeling turbulent Couette flow. Our results show that nPINNs can jointly infer this function as well as $δ$. Also, these parameters exhibit a universal behavior with respect to the Reynolds number, a finding that contributes to our understanding of nonlocal interactions in wall-bounded turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源