论文标题
开放式Riemann表面的纤维束中纤维的符号刚性
Symplectic Rigidity of Fibers in Cotangent Bundles of Open Riemann Surfaces
论文作者
论文摘要
我们研究了riemann表面的纤维束中纤维的互合僵硬现象。我们的主要结果可以看作是在附近的拉格朗日猜想上以$ t^* \ mathbb {r}^2 $打开Eliashberg和Polterovich任意工作属的Riemann表面的概括。作为推论,我们回答了Eliashberg问题的强大版本$ 2N = 4 $,以链接Lagrangian磁盘中的$ T^* \ Mathbb {r}^n $链接,Ekholm和Smith以前在Dimensions $ 2N \ geq 8 $中回答了这一问题。
We study symplectic rigidity phenomena for fibers in cotangent bundles of Riemann surfaces. Our main result can be seen as a generalization to open Riemann surfaces of arbitrary genus of work of Eliashberg and Polterovich on the Nearby Lagrangian Conjecture for $T^* \mathbb{R}^2$. As a corollary, we answer a strong version in dimension $2n=4$ of a question of Eliashberg about linking of Lagrangian disks in $T^* \mathbb{R}^n$, which was previously answered by Ekholm and Smith in dimensions $2n \geq 8$.