论文标题

几乎可以肯定终止概率程序的密度几乎在任何地方都可以区分

Densities of Almost Surely Terminating Probabilistic Programs are Differentiable Almost Everywhere

论文作者

Mak, Carol, Ong, C. -H. Luke, Paquet, Hugo, Wagner, Dominik

论文摘要

我们研究具有递归和调理的高阶统计概率程序的差异特性。我们的出发点是杨阳提出的一个空旷的问题:哪种类别的统计概率程序的密度几乎在任何地方都可以区分?为了正式解决问题,我们考虑统计PCF(SPCF),这是具有实数的逐个价值PCF的扩展,以及用于采样和调理的构造。我们为SPCF提供了采样风格的操作语义A la Borgstrom等人,并研究了相关的权重(通常称为密度)函数和值函数,并在可能的执行轨迹集中。我们的主要结果是,几乎终止由一组原始函数(例如分析功能集)生成的SPCF程序满足轻度闭合性能,具有几乎可以区分的重量和价值函数。我们使用符号执行的随机形式来推理几乎所有地方的可不同之处。这项工作的副产品是几乎终止具有实际参数的确定性PCF程序,表示几乎每个地方都可以区分的函数。我们的结果是实用的,因为几乎每个地方都需要密度函数的不同之处,才能保持基于主要梯度的推理算法的正确性。

We study the differential properties of higher-order statistical probabilistic programs with recursion and conditioning. Our starting point is an open problem posed by Hongseok Yang: what class of statistical probabilistic programs have densities that are differentiable almost everywhere? To formalise the problem, we consider Statistical PCF (SPCF), an extension of call-by-value PCF with real numbers, and constructs for sampling and conditioning. We give SPCF a sampling-style operational semantics a la Borgstrom et al., and study the associated weight (commonly referred to as the density) function and value function on the set of possible execution traces. Our main result is that almost-surely terminating SPCF programs, generated from a set of primitive functions (e.g. the set of analytic functions) satisfying mild closure properties, have weight and value functions that are almost-everywhere differentiable. We use a stochastic form of symbolic execution to reason about almost-everywhere differentiability. A by-product of this work is that almost-surely terminating deterministic (S)PCF programs with real parameters denote functions that are almost-everywhere differentiable. Our result is of practical interest, as almost-everywhere differentiability of the density function is required to hold for the correctness of major gradient-based inference algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源