论文标题

用$θ$ term的晶格量规理论的状态方法密度

Density of states approach for lattice gauge theory with a $θ$-term

论文作者

Gattringer, Christof, Orasch, Oliver

论文摘要

我们讨论了一种基于状态密度(DOS)方法的$θ$期限处理晶格场理论的复杂动作问题的新策略。关键成分是使用开放的边界条件,即拓扑电荷未量化到整数,并且状态密度的表现足够好,以便可以通过最近开发的DOS技术精确地计算出来。在对边界条件的方法和作用的一般讨论之后,我们用$θ$ - term分析了2-D U(1)晶格量规理论的方法,该模型可以以封闭形式解决。我们表明,在连续限制和开放边界条件下,描述了相同的物理并得出DOS,这表明仅对于开放边界条件,密度才能充分表现出足以进行数值评估。我们通过一个小的测试模拟总结了原理分析的证明,在该模拟中,我们可以计算密度并将其与分析结果进行比较。

We discuss a new strategy for treating the complex action problem of lattice field theories with a $θ$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quantized to integers and the density of states is sufficiently well behaved such that it can be computed precisely with recently developed DoS techniques. After a general discussion of the approach and the role of the boundary conditions, we analyze the method for 2-d U(1) lattice gauge theory with a $θ$-term, a model that can be solved in closed form. We show that in the continuum limit periodic and open boundary conditions describe the same physics and derive the DoS, demonstrating that only for open boundary conditions the density is sufficiently well behaved for a numerical evaluation. We conclude our proof of principle analysis with a small test simulation where we numerically compute the density and compare it with the analytical result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源