论文标题

有条件图像产生的细心归一化

Attentive Normalization for Conditional Image Generation

论文作者

Wang, Yi, Chen, Ying-Cong, Zhang, Xiangyu, Sun, Jian, Jia, Jiaya

论文摘要

基于传统的卷积生成对抗网络基于层次本地操作合成图像,其中长期依赖关系是通过马尔可夫链隐式建模的。对于具有复杂结构的类别而言,它仍然不够。在本文中,我们表征了远程依赖性,并具有专注的归一化(AN),这是传统实例归一化的扩展。具体而言,根据其内部语义相似性,将输入特征映射软分为几个区域,这些区域分别被标准化。它增强了具有语义对应关系的遥远区域之间的一致性。与自我发场的gan相比,我们的专注归一化不需要测量所有位置的相关性,因此可以直接应用于没有太多计算负担的大型特征图。关于类似图像产生和语义介绍的广泛实验验证了我们提出的模块的功效。

Traditional convolution-based generative adversarial networks synthesize images based on hierarchical local operations, where long-range dependency relation is implicitly modeled with a Markov chain. It is still not sufficient for categories with complicated structures. In this paper, we characterize long-range dependence with attentive normalization (AN), which is an extension to traditional instance normalization. Specifically, the input feature map is softly divided into several regions based on its internal semantic similarity, which are respectively normalized. It enhances consistency between distant regions with semantic correspondence. Compared with self-attention GAN, our attentive normalization does not need to measure the correlation of all locations, and thus can be directly applied to large-size feature maps without much computational burden. Extensive experiments on class-conditional image generation and semantic inpainting verify the efficacy of our proposed module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源