论文标题

无杰克逊型估计分段$ q $ -Sonotone,$ Q \ ge3 $,三角近似

No Jackson-type estimates for piecewise $q$-monotone, $q\ge3$, trigonometric approximation

论文作者

Leviatan, Dany, Motorna, Oksana V., Shevchuk, Igor A.

论文摘要

我们说c [a,b] $ in c $ q $ - 单酮,$ q \ ge3 $,如果$ f \ in c^{q-2}(a,b)$和$ f^{(q-2)} $是$(a,b)$的convex $。令$ f $是连续的,$2π$ - 周期性,并以$ [-π,π] $有限地更改其$ Q $ - 单调性。我们有兴趣通过三角多项式估计与之共同Q $ - 单调的$ f $的近似程度,即,三角多项式元素完全改变其$ q $单调性,完全改变了$ f $的位置。这样的杰克逊类型估计值对分段单调($ q = 1 $)和分段凸(q = 2)近似有效。但是,我们证明,当$ q \ ge3 $时,对于共同的Q $ - 单子酮近似,通常没有此类估计值有效。

We say that a function $f\in C[a,b]$ is $q$-monotone, $q\ge3$, if $f\in C^{q-2}(a,b)$ and $f^{(q-2)}$ is convex in $(a,b)$. Let $f$ be continuous and $2π$-periodic, and change its $q$-monotonicity finitely many times in $[-π,π]$. We are interested in estimating the degree of approximation of $f$ by trigonometric polynomials which are co-$q$-monotone with it, namely, trigonometric polynomials that change their $q$-monotonicity exactly at the points where $f$ does. Such Jackson type estimates are valid for piecewise monotone ($q=1$) and piecewise convex (q=2) approximations. However, we prove, that no such estimates are valid, in general, for co-$q$-monotone approximation, when $q\ge3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源