论文标题

地球核心条件下铁的电子相关性和运输

Electronic correlations and transport in iron at Earth's core conditions

论文作者

Pourovskii, L. V., Mravlje, J., Pozzo, M., Alfè, D.

论文摘要

地球内部核心条件下铁的运输特性对于地球物理建模是必不可少的输入,但实验性限制不佳。在这里,我们表明,即使正确考虑了电子 - 电子散射(EES),在这些条件下铁的热电导率仍然很高。通过始终如一地考虑热障碍和电子相关性,可以通过Ab Initible模拟获得该结果。热疾病抑制了以身体为中心的立方铁相的非粉状液体行为,因此减少了EES;该阶段的总计算热导率为220 wm $^{ - 1} $ k $^{ - 1} $,而EES还原不超过20%。 EES和电子武器散射是相互交织的,从而随着EES的增加而破坏了Matthiessen的规则。在六角形封闭的铁中,EES也不会因热障碍而增加,并且保持较弱。因此,我们的主要发现是内核中两个可能的铁相。

The transport properties of iron under Earth's inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into account consistently both thermal disorder and electronic correlations. Thermal disorder suppresses the non-Fermi-liquid behavior of the body-centered cubic iron phase, hence, reducing the EES; the total calculated thermal conductivity of this phase is 220 Wm$^{-1}$K$^{-1}$ with the EES reduction not exceeding 20%. The EES and electron-lattice scattering are intertwined resulting in breaking of the Matthiessen's rule with increasing EES. In the hexagonal close-packed iron the EES is also not increased by thermal disorder and remains weak. Our main finding thus holds for the both likely iron phases in the inner core.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源