论文标题

概率空间变压器网络

Probabilistic Spatial Transformer Networks

论文作者

Schwöbel, Pola, Warburg, Frederik, Jørgensen, Martin, Madsen, Kristoffer H., Hauberg, Søren

论文摘要

空间变压器网络(STNS)估计图像变换,可以通过“放大”图像中的相关区域“放大”来改善下游任务。但是,STN很难训练,并且对转换的错误预测敏感。为了避免这些局限性,我们提出了一种概率扩展,该扩展估计了随机变化而不是确定性的转换。边缘化转换使我们能够以多个姿势考虑每个图像,这使本地化任务更容易,培训更加健壮。作为另一个好处,随机转换充当了局部,学习的数据增强,可改善下游任务。我们在标准成像基准和充满挑战的现实数据集中显示,这两个属性会改善分类性能,鲁棒性和模型校准。我们进一步证明,该方法通过改善时间序列数据的模型性能来概括为非视觉域。

Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by `zooming in' on relevant regions in an image. However, STNs are hard to train and sensitive to mis-predictions of transformations. To circumvent these limitations, we propose a probabilistic extension that estimates a stochastic transformation rather than a deterministic one. Marginalizing transformations allows us to consider each image at multiple poses, which makes the localization task easier and the training more robust. As an additional benefit, the stochastic transformations act as a localized, learned data augmentation that improves the downstream tasks. We show across standard imaging benchmarks and on a challenging real-world dataset that these two properties lead to improved classification performance, robustness and model calibration. We further demonstrate that the approach generalizes to non-visual domains by improving model performance on time-series data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源