论文标题

TypEnet​​:扩展击键生物识别技术

TypeNet: Scaling up Keystroke Biometrics

论文作者

Acien, Alejandro, Monaco, John V., Morales, Aythami, Vera-Rodriguez, Ruben, Fierrez, Julian

论文摘要

我们研究击键动力学的适用性,以身份验证100K用户键入自由文本。为此,我们首先分析基于暹罗复发性神经网络(RNN)的方法在何种程度上可以在稀缺的每个用户数据量时对用户进行身份验证,这是自由文本键键入身份验证的常见情况。使用1K用户用于测试网络,人口大小与以前的工作相当,TypeNet仅使用5个注册序列和每个用户的1个测试序列获得4.8%的同等错误率,每个序列50键击。使用每个用户的数据量相同,因为测试用户的数量最高为100K,相比之下,相对较小的1K衰减的性能相对少于5%,这表明了TypeNet的潜力在大规模的用户数量方面很好地扩展。我们的实验是使用Aalto University击键数据库进行的。据我们所知,这是捕获的最大的自由文本击键数据库,该数据库捕获了超过13600万用户的1.36亿按键。

We study the suitability of keystroke dynamics to authenticate 100K users typing free-text. For this, we first analyze to what extent our method based on a Siamese Recurrent Neural Network (RNN) is able to authenticate users when the amount of data per user is scarce, a common scenario in free-text keystroke authentication. With 1K users for testing the network, a population size comparable to previous works, TypeNet obtains an equal error rate of 4.8% using only 5 enrollment sequences and 1 test sequence per user with 50 keystrokes per sequence. Using the same amount of data per user, as the number of test users is scaled up to 100K, the performance in comparison to 1K decays relatively by less than 5%, demonstrating the potential of TypeNet to scale well at large scale number of users. Our experiments are conducted with the Aalto University keystroke database. To the best of our knowledge, this is the largest free-text keystroke database captured with more than 136M keystrokes from 168K users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源