论文标题

拓扑关键状态和一维准晶体中的异常电子传输

Topological critical states and anomalous electronic transmittance in one dimensional quasicrystals

论文作者

Jeon, Junmo, Lee, SungBin

论文摘要

由于没有周期性长度尺度,几乎没有了解电子状态及其在准晶体中的拓扑特性。在这里,我们专注于一维准晶体,并揭示其电子临界状态在拓扑上是强大的。基于平铺空间的共同体,我们说明了一个维度固定的斜利,尤其是斐波那契ic准晶的情况,并证明了零能量处的拓扑关键状态存在。此外,我们还显示了此类拓扑关键状态附近的奇特电子传播行为。在扰动性方面,我们讨论缺乏翻译对称性和拓扑关键状态的存在导致透射率中非常规缩放行为。考虑到分析分析和数字,在将系统放置在空气中或通过半无限周期性引线连接的情况下,计算电子传输。最后,我们还讨论了我们分析对其他准晶体的概括。我们的发现打开了一类新的拓扑量子状态,这些状态仅在不存在周期性长度尺度的情况下,由于异国情调的瓷砖模式及其异常的电子传输特性,这些量子状态仅存在于准晶体中。

Due to the absence of periodic length scale, electronic states and their topological properties in quasicrystals have been barely understood. Here, we focus on one dimensional quasicrystal and reveal that their electronic critical states are topologically robust. Based on tiling space cohomology, we exemplify the case of one dimensional aperiodic tilings especially Fibonacci quasicrystal and prove the existence of topological critical states at zero energy. Furthermore, we also show exotic electronic transmittance behavior near such topological critical states. Within the perturbative regime, we discuss lack of translational symmetries and presence of topological critical states lead to unconventional scaling behavior in transmittance. Considering both analytic analysis and numerics, electronic transmittance is computed in cases where the system is placed in air or is connected by semi-infinite periodic leads. Finally, we also discuss generalization of our analysis to other quasicrystals. Our findings open a new class of topological quantum states which solely exist in quasicrystals due to exotic tiling patterns in the absence of periodic length scale, and their anomalous electronic transport properties applicable to many experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源