论文标题
部分超凸表面组表示的项圈引理
A collar lemma for partially hyperconvex surface group representations
论文作者
论文摘要
我们表明,一个衣领引理将基本表面基本组的Anosov表示为$ \ sl(n,\ r)$,这些$ \ sl(n,\ r)满足了受Labourie的工作启发的部分超概念属性。对于高级TeichMüller空间中未包含的几种开放式Anosov表示形式,以及$θ$ p-po-po-po-po-po-per的表示形式是这种情况。我们还表明,以Hitchin表示已知的“阳性特性”,例如被呈阳性比率和具有正理价值的比率,也适用于部分超凸表示。
We show that a collar lemma holds for Anosov representations of fundamental groups of surfaces into $\SL(n,\R)$ that satisfy partial hyperconvexity properties inspired from Labourie's work. This is the case for several open sets of Anosov representations not contained in higher rank Teichmüller spaces, as well as for $Θ$-positive representations into $\SO(p,q)$ if $p\geq 4$. We moreover show that 'positivity properties' known for Hitchin representations, such as being positively ratioed and having positive eigenvalue ratios, also hold for partially hyperconvex representations.