论文标题

多核系统的有效任务映射

Efficient Task Mapping for Manycore Systems

论文作者

Wang, Xiqian, Xi, Jiajin, Wang, Yinghao, Bogdan, Paul, Nazarian, Shahin

论文摘要

片上系统(SOC)已从单一核心迁移到许多核心体系结构,以应对现实生活应用的复杂性日益增加。应用程序任务映射对多核系统(MCS)计算和通信的效率有重大影响。我们提出WAANSO,这是一个可扩展的框架,它结合了基于小波聚类的群集应用程序任务的方法。我们还基于蚂蚁菌落优化(ACO)和粒子群优化(PSO)的迭代执行来引入蚂蚁群优化(ASO),以进行任务群集和映射到MCS处理元素。我们已经表明,Waanso可以显着提高MCS能量和性能效率。基于我们对64核系统的实验,与基线方法相比,Waanso将能源效率提高了19%,即DPSO,ACO和Branch and Bond和Bond(B&B)。此外,与基于噪声(DBSCAN)基线的应用程序的密度空间聚类相比,性能提高了65.86%。

System-on-chip (SoC) has migrated from single core to manycore architectures to cope with the increasing complexity of real-life applications. Application task mapping has a significant impact on the efficiency of manycore system (MCS) computation and communication. We present WAANSO, a scalable framework that incorporates a Wavelet Clustering based approach to cluster application tasks. We also introduce Ant Swarm Optimization (ASO) based on iterative execution of Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) for task clustering and mapping to the MCS processing elements. We have shown that WAANSO can significantly increase the MCS energy and performance efficiencies. Based on our experiments on a 64-core system, WAANSO improves energy efficiency by 19%, compared to baseline approaches, namely DPSO, ACO and branch and bound (B&B). Additionally, the performance improves by 65.86% compared to Density-Based Spatial Clustering of Applications with Noise (DBSCAN) baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源