论文标题
基于马尔可夫决策过程的旋转系统设计:非线性EH电路,记忆和阻抗不匹配
Markov Decision Process Based Design of SWIPT Systems: Non-linear EH Circuits, Memory, and Impedance Mismatch
论文作者
论文摘要
在本文中,我们研究了使用实用的非线性能量收割机(EH)电路的同时无线信息和电力传输(SWIPT)系统。由于逼真的EH电路的反应性元件之间的电压无法瞬时降低或升高,因此EHS具有Markov决策过程(MDP)建模的内存。此外,由于无法准确模拟所有非线性效应和EHS不可避免的阻抗不匹配的分析模型,因此我们为EH电路提出了一个基于学习的模型。我们优化了在限制发射机(TX)和信息接收器(IR)之间的最低限度相互信息下最大化收获功率的输入信号分布。我们区分了MDP状态在TX和IR中不知道的情况。当已知MDP状态时,收获功率的公式优化问题是凸。相反,如果TX和IR不知道MDP状态,则最终的优化问题是非凸的,并通过交替优化解决了,这表明可以产生问题的限制点。我们的仿真结果表明,所考虑的旋转系统的利率功率区域取决于符号持续时间,EH输入功率水平,EH阻抗不匹配和EH电路的类型。特别是,较短的符号持续时间可以使更高的比特率以牺牲平均收获功率的显着降低为代价。此外,尽管半波整流器在低和中等输入功率方面的表现优于全波整流器,但如果EH处的输入功率很高,则最好是全波整流器。
In this paper, we study simultaneous wireless information and power transfer (SWIPT) systems employing practical non-linear energy harvester (EH) circuits. Since the voltage across the reactive elements of realistic EH circuits cannot drop or rise instantaneously, EHs have memory which we model with a Markov decision process (MDP). Moreover, since an analytical model that accurately models all non-linear effects and the unavoidable impedance mismatch of EHs is not tractable, we propose a learning based model for the EH circuit. We optimize the input signal distribution for maximization of the harvested power under a constraint on the minimum mutual information between transmitter (TX) and information receiver (IR). We distinguish the cases where the MDP state is known and not known at TX and IR. When the MDP state is known, the formulated optimization problem for the harvested power is convex. In contrast, if TX and IR do not know the MDP state, the resulting optimization problem is non-convex and solved via alternating optimization, which is shown to yield a limit point of the problem. Our simulation results reveal that the rate-power region of the considered SWIPT system depends on the symbol duration, the EH input power level, the EH impedance mismatch, and the type of EH circuit. In particular, a shorter symbol duration enables higher bit rates at the expense of a significant decrease in the average harvested power. Furthermore, whereas half-wave rectifiers outperform full-wave rectifiers in the low and medium input power regimes, full-wave rectifiers are preferable if the input power at the EH is high.