论文标题
结组代表的扭曲的亚历山大不变式II;计算和二元性
Twisted Alexander invariants of knot group representations II; computation and duality
论文作者
论文摘要
鉴于从链接组到一个组的同态,我们以另一种方式引入了$ k_1 $ class,这是对亚历山大多项式的1-变量的概括。我们将$ k_1 $ class与$ k_1 $ -classes中的\ cite {nos}和reidemeister扭转进行了比较。作为推论,我们表现出与有限循环覆盖空间的雷德扭转的关系,并在某些感觉上表现出互惠。
Given a homomorphism from a link group to a group, we introduce a $K_1$-class in another way, which is a generalization of the 1-variable Alexander polynomial. We compare the $K_1$-class with $K_1$-classes in \cite{Nos} and with Reidemeister torsions. As a corollary, we show a relation to Reidemeister torsions of finite cyclic covering spaces, and show reciprocity in some senses.