论文标题

朝向多模式同时神经机器翻译

Towards Multimodal Simultaneous Neural Machine Translation

论文作者

Imankulova, Aizhan, Kaneko, Masahiro, Hirasawa, Tosho, Komachi, Mamoru

论文摘要

同时翻译涉及在说话者的话语完成之前翻译句子,以便以多种语言实现实时理解。由于解码过程中输入信息的短缺,此任务比一般的完整句子翻译更具挑战性。为了减轻这种短缺,我们提出了多模式的同时神经机器翻译(MSNMT),它利用视觉信息作为附加方式。我们对Multi30k数据集进行的实验表明,MSNMT在更及时的翻译情况下的较低延迟情况下,其仅比文本量显着优于其文本相对应。此外,我们通过对MSNMT进行对抗评估来验证解码过程中视觉信息的重要性,在那里我们研究了模型如何以不一致的输入方式表现出来,并分析了源语言和目标语言之间不同单词顺序的效果。

Simultaneous translation involves translating a sentence before the speaker's utterance is completed in order to realize real-time understanding in multiple languages. This task is significantly more challenging than the general full sentence translation because of the shortage of input information during decoding. To alleviate this shortage, we propose multimodal simultaneous neural machine translation (MSNMT), which leverages visual information as an additional modality. Our experiments with the Multi30k dataset showed that MSNMT significantly outperforms its text-only counterpart in more timely translation situations with low latency. Furthermore, we verified the importance of visual information during decoding by performing an adversarial evaluation of MSNMT, where we studied how models behaved with incongruent input modality and analyzed the effect of different word order between source and target languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源