论文标题

广义二次矩阵编程:使用任意输入分布的线性预编码的统一框架

Generalized Quadratic Matrix Programming: A Unified Framework for Linear Precoding With Arbitrary Input Distributions

论文作者

Jin, Juening, Rosa~Zheng, Yahong, Chen, Wen, Xiao, Chengshan

论文摘要

本文研究了一类新的非凸优化,该类别为具有任意输入分布的单个/多用户多输入多输出(MIMO)通道提供了一个统一的框架。新的优化称为广义二次矩阵编程(GQMP)。由于不确定的多项式时间(NP) - GQMP问题的掌握性,而不是寻求全球最佳解决方案,因此我们提出了一种有效的算法,该算法保证可以收敛到Karush-Kuhn-tucker(KKT)点。该算法背后的想法是为非凸物目标和约束函数构造明确的凹面下限,然后解决一系列凹面最大化问题的序列,直到收敛为止。在应用方面,我们考虑了一个下行链路底层安全认知无线电(CR)网络,每个节点都有多个天线。我们设计线性预码器,以最大化发射机处的有限词组输入和统计通道状态信息(CSI)最大化平均保密率(SUM)速率。在安全的多播/广播方案下的预编码问题是GQMP问题,因此可以通过我们提出的算法有效地解决它们。提供了几个数值示例,以显示我们算法的功效。

This paper investigates a new class of non-convex optimization, which provides a unified framework for linear precoding in single/multi-user multiple-input multiple-output (MIMO) channels with arbitrary input distributions. The new optimization is called generalized quadratic matrix programming (GQMP). Due to the nondeterministic polynomial time (NP)-hardness of GQMP problems, instead of seeking globally optimal solutions, we propose an efficient algorithm which is guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point. The idea behind this algorithm is to construct explicit concave lower bounds for non-convex objective and constraint functions, and then solve a sequence of concave maximization problems until convergence. In terms of application, we consider a downlink underlay secure cognitive radio (CR) network, where each node has multiple antennas. We design linear precoders to maximize the average secrecy (sum) rate with finite-alphabet inputs and statistical channel state information (CSI) at the transmitter. The precoding problems under secure multicast/broadcast scenarios are GQMP problems, and thus they can be solved efficiently by our proposed algorithm. Several numerical examples are provided to show the efficacy of our algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源