论文标题

一致和互补图的正规化多视图子空间群集

Consistent and Complementary Graph Regularized Multi-view Subspace Clustering

论文作者

Zheng, Qinghai, Zhu, Jihua, Li, Zhongyu, Pang, Shanmin, Wang, Jun, Chen, Lei

论文摘要

这项研究调查了多视图聚类的问题,其中多个视图包含一致的信息,每个视图还包括互补信息。对所有信息的探索对于良好的多视图聚类至关重要。但是,大多数传统方法盲目或粗略地结合了多种视图以进行聚类,并且无法完全利用宝贵的信息。因此,我们提出了一种涉及一致且互补的图形调查多视图子空间聚类(GRMSC)的方法,该方法同时将一致的图形正规化程序与互补的图形正常化程序集成到目标函数中。特别是,一致的图形正常器了解所有视图共享的数据点的固有亲和力关系。互补的图表正常化程序研究了多种视图的特定信息。值得注意的是,一致和互补的正规化器是由分别从多个视图的一阶接近和二阶接近度构成的两个不同的图表。目标函数通过增强的Lagrangian乘数方法优化,以实现多视图聚类。六个基准数据集的广泛实验可验证所提出的方法比其他最先进的多视图聚类方法的有效性。

This study investigates the problem of multi-view clustering, where multiple views contain consistent information and each view also includes complementary information. Exploration of all information is crucial for good multi-view clustering. However, most traditional methods blindly or crudely combine multiple views for clustering and are unable to fully exploit the valuable information. Therefore, we propose a method that involves consistent and complementary graph-regularized multi-view subspace clustering (GRMSC), which simultaneously integrates a consistent graph regularizer with a complementary graph regularizer into the objective function. In particular, the consistent graph regularizer learns the intrinsic affinity relationship of data points shared by all views. The complementary graph regularizer investigates the specific information of multiple views. It is noteworthy that the consistent and complementary regularizers are formulated by two different graphs constructed from the first-order proximity and second-order proximity of multiple views, respectively. The objective function is optimized by the augmented Lagrangian multiplier method in order to achieve multi-view clustering. Extensive experiments on six benchmark datasets serve to validate the effectiveness of the proposed method over other state-of-the-art multi-view clustering methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源