论文标题

稀疏高斯过程的直接损失最小化算法

Direct loss minimization algorithms for sparse Gaussian processes

论文作者

Wei, Yadi, Sheth, Rishit, Khardon, Roni

论文摘要

本文对直接损失最小化(DLM)进行了彻底的研究,该研究优化了稀疏高斯过程中的预测损失的后部。对于共轭案例,我们考虑对数损坏和DLM的DLM,用于正方形损耗,在这两种情况下显示出显着的性能提高。 DLM在非偶联的情况下的应用更为复杂,因为日志损坏DLM物镜中的期望对数通常很棘手,简单的采样会导致梯度的偏差估计值。该论文为解决这个问题做出了两项技术贡献。首先,提出了一种使用产品采样的新方法,该方法对目标函数的梯度(UPS)进行了无偏估计。其次,对有偏见的蒙特卡洛估计值(BMC)的理论分析表明,尽管有偏置梯度,但随机梯度下降会收敛。实验证明了DLM的经验成功。对采样方法的比较表明,尽管UPS可能更有效率,但BMC在收敛时间和计算效率方面提供了更好的权衡。

The paper provides a thorough investigation of Direct loss minimization (DLM), which optimizes the posterior to minimize predictive loss, in sparse Gaussian processes. For the conjugate case, we consider DLM for log-loss and DLM for square loss showing a significant performance improvement in both cases. The application of DLM in non-conjugate cases is more complex because the logarithm of expectation in the log-loss DLM objective is often intractable and simple sampling leads to biased estimates of gradients. The paper makes two technical contributions to address this. First, a new method using product sampling is proposed, which gives unbiased estimates of gradients (uPS) for the objective function. Second, a theoretical analysis of biased Monte Carlo estimates (bMC) shows that stochastic gradient descent converges despite the biased gradients. Experiments demonstrate empirical success of DLM. A comparison of the sampling methods shows that, while uPS is potentially more sample-efficient, bMC provides a better tradeoff in terms of convergence time and computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源