论文标题

步态的概率建模用于日常生活中可靠的被动监测

Probabilistic modelling of gait for robust passive monitoring in daily life

论文作者

Raykov, Yordan P., Evers, Luc J. W., Badawy, Reham, Bloem, Bastiaan, Heskes, Tom M., Meinders, Marjan, Claes, Kasper, Little, Max A.

论文摘要

日常生活中的被动监测可能会提供有关一个人全天健康的宝贵见解。可穿戴的传感器设备可能在以非引人注目的方式启用此类监控方面发挥关键作用。但是,日常生活中收集的传感器数据共同反映了多个健康和行为相关的因素。这产生了结构化原则分析的需求,以产生可靠的可解释预测,这些预测可用于支持临床诊断和治疗。在这项工作中,我们开发了一种自由生活步态(步行)分析的原则建模方法。步态是非引人注目监测的有希望的目标,因为它很常见,并且表明了各种运动障碍,例如帕金森氏病(PD),但其分析很大程度上仅限于实验控制的实验室环境。为了定位和表征使用加速度计的自由生活中的固定步态段,我们提出了一个无监督的统计框架,旨在将信号分割为不同的步态和非对基因模式。我们的灵活概率框架将关于步态的经验假设与原则上的图形模型结合在一起。我们在一个新的视频引用数据集上演示了这种方法,包括在自己的房屋内外的25名PD患者和25个对照的无脚本日常生活活动。我们评估了根据模型步态检测步态和预测药物诱导的PD患者波动的能力。我们的评估包括在多个身体位置附加的传感器之间进行比较,包括腕,脚踝,裤子口袋和下背部。

Passive monitoring in daily life may provide invaluable insights about a person's health throughout the day. Wearable sensor devices are likely to play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflects multiple health and behavior related factors together. This creates the need for structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of various movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free living using accelerometers, we present an unsupervised statistical framework designed to segment signals into differing gait and non-gait patterns. Our flexible probabilistic framework combines empirical assumptions about gait into a principled graphical model with all of its merits. We demonstrate the approach on a new video-referenced dataset including unscripted daily living activities of 25 PD patients and 25 controls, in and around their own houses. We evaluate our ability to detect gait and predict medication induced fluctuations in PD patients based on modelled gait. Our evaluation includes a comparison between sensors attached at multiple body locations including wrist, ankle, trouser pocket and lower back.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源