论文标题
嘈杂的中间量子设备的经典优化器
Classical Optimizers for Noisy Intermediate-Scale Quantum Devices
论文作者
论文摘要
我们提供了一系列用于使用噪声中间量子(NISQ)设备的优化器的集合。优化器在量子计算中具有一系列应用,包括变异量子本元(VQE)和量子近似优化(QAOA)算法。它们还用于校准任务,高参数调整,机器学习等。我们在VQE案例研究中分析了不同优化器的效率和有效性。 VQE是一种混合算法,具有经典的最小化步骤,驱动量子处理器的下一个评估。迄今为止,大多数结果都集中在调整量子VQE电路上,但我们表明,在存在量子噪声的情况下,需要仔细选择经典的最小化步骤以获得正确的结果。我们使用量子电路模拟环境具有噪音,将噪声函数,成本函数和压力测试探索,使用量子电路模拟环境具有噪声注射功能,可以处理嘈杂,黑色框,成本函数和压力测试。我们的结果表明,专门调整的优化器对于在NISQ硬件上获得有效的科学结果至关重要,即使对于将来的故障耐受电路,也可能仍然必要。
We present a collection of optimizers tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices. Optimizers have a range of applications in quantum computing, including the Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization (QAOA) algorithms. They are also used for calibration tasks, hyperparameter tuning, in machine learning, etc. We analyze the efficiency and effectiveness of different optimizers in a VQE case study. VQE is a hybrid algorithm, with a classical minimizer step driving the next evaluation on the quantum processor. While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results. We explore state-of-the-art gradient-free optimizers capable of handling noisy, black-box, cost functions and stress-test them using a quantum circuit simulation environment with noise injection capabilities on individual gates. Our results indicate that specifically tuned optimizers are crucial to obtaining valid science results on NISQ hardware, and will likely remain necessary even for future fault tolerant circuits.