论文标题

ICECUBE搜索中微子与Ligo-Virgo的第一个重力波瞬时目录的紧凑型二进制合并一致

IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog

论文作者

Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alispach, C., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., Axani, S., Bagherpour, H., Bai, X., V., A. Balagopal, Barbano, A., Bartos, I., Barwick, S. W., Bastian, B., Baum, V., Baur, S., Bay, R., Beatty, J. J., Becker, K. -H., Tjus, J. Becker, BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Bohm, C., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Bourbeau, J., Bradascio, F., Braun, J., Bron, S., Brostean-Kaiser, J., Burgman, A., Buscher, J., Busse, R. S., Carver, T., Chen, C., Cheung, E., Chirkin, D., Choi, S., Clark, B. A., Clark, K., Classen, L., Coleman, A., Collin, G. H., Conrad, J. M., Coppin, P., Corley, K. R., Correa, P., Countryman, S., Cowen, D. F., Cross, R., Dave, P., De Clercq, C., DeLaunay, J. J., Dembinski, H., Deoskar, K., De Ridder, S., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., DeYoung, T., Dharani, S., Diaz, A., Díaz-Vélez, J. C., Dujmovic, H., Dunkman, M., Dvorak, E., Eberhardt, B., Ehrhardt, T., Eller, P., Engel, R., Evenson, P. A., Fahey, S., Fazely, A. R., Felde, J., Filimonov, K., Finley, C., Fox, D., Franckowiak, A., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Ganster, E., Garrappa, S., Gerhardt, L., Ghorbani, K., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Grant, D., Grégoire, T., Griffith, Z., Griswold, S., Günder, M., Gündüz, M., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Hanson, K., Haungs, A., Hauser, S., Hebecker, D., Heereman, D., Heix, P., Helbing, K., Hellauer, R., Henningsen, F., Hickford, S., Hignight, J., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoinka, T., Hokanson-Fasig, B., Hoshina, K., Huang, F., Huber, M., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., In, S., Iovine, N., Ishihara, A., Jansson, M., Japaridze, G. S., Jeong, M., Jero, K., Jones, B. J. P., Jonske, F., Joppe, R., Kang, D., Kang, W., Kappes, A., Kappesser, D., Karg, T., Karl, M., Karle, A., Katz, U., Kauer, M., Keivani, A., Kellermann, M., Kelley, J. L., Kheirandish, A., Kim, J., Kintscher, T., Kiryluk, J., Kittler, T., Klein, S. R., Koirala, R., Kolanoski, H., Köpke, L., Kopper, C., Kopper, S., Koskinen, D. J., Koundal, P., Kowalski, M., Krings, K., Krückl, G., Kulacz, N., Kurahashi, N., Kyriacou, A., Lanfranchi, J. L., Larson, M. J., Lauber, F., Lazar, J. P., Leonard, K., Leszczynska, A., Li, Y., Liu, Q. R., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Ludwig, A., Lünemann, J., Luszczak, W., Lyu, Y., Ma, W. Y., Madsen, J., Maggi, G., Mahn, K. B. M., Makino, Y., Mallik, P., Mallot, K., Mancina, S., Mariş, I. C., Marka, S., Marka, Z., Maruyama, R., Mase, K., Maunu, R., McNally, F., Meagher, K., Medici, M., Medina, A., Meier, M., Meighen-Berger, S., Merino, G., Merz, J., Meures, T., Micallef, J., Mockler, D., Momenté, G., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Muth, P., Nagai, R., Naumann, U., Neer, G., Nguyen, L. V., Niederhausen, H., Nisa, M. U., Nowicki, S. C., Nygren, D. R., Pollmann, A. Obertacke, Oehler, M., Olivas, A., O'Murchadha, A., O'Sullivan, E., Palczewski, T., Pandya, H., Pankova, D. V., Park, N., Peiffer, P., Heros, C. Pérez de los, Philippen, S., Pieloth, D., Pieper, S., Pinat, E., Pizzuto, A., Plum, M., Popovych, Y., Porcelli, A., Price, P. B., Przybylski, G. T., Raab, C., Raissi, A., Rameez, M., Rauch, L., Rawlins, K., Rea, I. C., Rehman, A., Reimann, R., Relethford, B., Renschler, M., Renzi, G., Resconi, E., Rhode, W., Richman, M., Robertson, S., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Cantu, D. Rysewyk, Safa, I., Herrera, S. E. Sanchez, Sandrock, A., Sandroos, J., Santander, M., Sarkar, S., Sarkar, S., Satalecka, K., Scharf, M., Schaufel, M., Schieler, H., Schlunder, P., Schmidt, T., Schneider, A., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seunarine, S., Shefali, S., Silva, M., Snihur, R., Soedingrekso, J., Soldin, D., Song, M., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stein, R., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R. G., Stössl, A., Strotjohann, N. L., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tilav, S., Tollefson, K., Tomankova, L., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Ty, B., Unger, E., Elorrieta, M. A. Unland, Usner, M., Vandenbroucke, J., Van Driessche, W., van Eijk, D., van Eijndhoven, N., van Santen, J., Verpoest, S., Veske, D., Vraeghe, M., Walck, C., Wallace, A., Wallraff, M., Wandkowsky, N., Watson, T. B., Weaver, C., Weindl, A., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Whelan, B. J., Whitehorn, N., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wills, L., Wolf, M., Wood, J., Wood, T. R., Woschnagg, K., Wrede, G., Wulff, J., Xu, D. L., Xu, X. W., Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Yuan, T., Zöcklein, M.

论文摘要

使用Icecube中微子观测站,我们在第一次和第二次观测过程中搜索了Ligo和处女座重力波(GW)检测器观察到的紧凑型二元合并的高能中微子发射。我们提出了两个搜索的结果,该搜索针对的是在报告的合并时间围绕的1000秒窗口中,每个引力波事件的天空定位是对排放的一致。一个搜索使用与模型无关的最大似然分析,该搜索使用来自IceCube的中微子数据来搜索与GW事件的天空定位一致的类似点状的中微子源。另一个使用低延迟算法用于多门神经物理学,该算法通过贝叶斯框架结合了天体物理先验,并包括Ligo-Virgo检测器特性,以确定GW源与中微子之间的关联。在Ligo-Virgo探测器的前两个观察过程中,任何一种搜索都没有看到任何明显的中微子重合。我们为11个GW事件中的每个事件中的每个窗口中的每个窗口中的时间集成中微子发射设置了上微子发射。这些限制范围为0.02-0.7 $ \ mathrm {gev〜cm^{ - 2}} $。我们还设置了各向同性等效能量的限制,$ e _ {\ mathrm {iso}} $,每个GW事件都以高能中微子发射。这些限制范围从1.7 $ \ times $ 10 $^{51} $ - 1.8 $ \ times $ 10 $^{55} $ erg。最后,我们以Ligo-Virgo观察运行O3的前景前景,在此期间,这两个分析都在实时进行。

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 $\mathrm{GeV~cm^{-2}}$. We also set limits on the total isotropic equivalent energy, $E_{\mathrm{iso}}$, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 $\times$ 10$^{51}$ - 1.8 $\times$ 10$^{55}$ erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源