论文标题

延长的仿期为代数,顶点代数和还原组

Extended affine Lie algebras, vertex algebras, and reductive groups

论文作者

Chen, Fulin, Li, Haisheng, Tan, Shaobin, Wang, Qing

论文摘要

在本文中,我们探讨了扩展的仿射词的自然连接,代数$ \ wideHat {sl_n}(\ Mathbb {c} _q)$与$ \ mathbb {c} _q} _q = \ \ m mathbb {c} 2-torus,简单的仿射顶点algebra $ l _ {\ wideHat {sl _ {\ infty}}}}}}(\ ell,0)$带有$ \ ell $ a正整数,levi子组$ g $ g of $ gl_ \ gl_ \ ell(\ ell(\ mathbb {c c} c})$。首先,我们在可集成限制的$ \ wideHat {sl_n}(\ Mathbb {c} _q)$ - 等级$ \ ell $的模块与Equivariant Quasi Quasi Quasi $ l _ {\ wideHat {\ sl _ {sl _ {$ nod)之间给出了一个规范的同构。其次,我们将不可理用的$ \ mathbb {n} $ - 分级epivariant quasi $ l _ {\ wideHat {sl _ {\ infty}}}(\ ell,0)$ - 模块。第三,我们建立了不可约合$ \ mathbb {n} $ - 分级的equivariant quasi $ l _ {\ wideHat {sl _ {\ infty}}}}}(\ ell,0)$ - 模块 - 模块和不可修复的常规$ g $ -Modules在某些fermerionic fock spaces上。第四,我们获得了每个不可约的$ \ mathbb {n} $ - 分级equivariant quasi $ l _ {\ wideHat {sl _ {\ infty}}}}}(\ ell,0)$ - $ - 模块。第五,我们完全确定以下分支:1 $ l _ {\ wideHat {sl _ {\ infty}}}}}}}}(\ ell,0)\ otimes l _ {\ wideHat { $ l _ {\ wideHat {sl _ {\ infty}}}}}}(\ ell+\ ell',0)$用于准模块。 2从$ \ wideHat {sl_n}(\ mathbb {c} _q)$分支到其levi subalgebras。 3从$ \ wideHat {sl_n}(\ mathbb {c} _q)$到其subalgebras $ \ wideHat {sl_n}(\ Mathbb {c} _q [t_0^{

In this paper, we explore natural connections among the representations of the extended affine Lie algebra $\widehat{sl_N}(\mathbb{C}_q)$ with $\mathbb{C}_q=\mathbb{C}_q[t_0^{\pm1},t_1^{\pm1}]$ an irrational quantum 2-torus, the simple affine vertex algebra $L_{\widehat{sl_{\infty}}}(\ell,0)$ with $\ell$ a positive integer, and Levi subgroups $G$ of $GL_\ell(\mathbb{C})$. First, we give a canonical isomorphism between the category of integrable restricted $\widehat{sl_N}(\mathbb{C}_q)$-modules of level $\ell$ and that of equivariant quasi $L_{\widehat{sl_{\infty}}}(\ell,0)$-modules. Second, we classify irreducible $\mathbb{N}$-graded equivariant quasi $L_{\widehat{sl_{\infty}}}(\ell,0)$-modules. Third, we establish a duality between irreducible $\mathbb{N}$-graded equivariant quasi $L_{\widehat{sl_{\infty}}}(\ell,0)$-modules and irreducible regular $G$-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible $\mathbb{N}$-graded equivariant quasi $L_{\widehat{sl_{\infty}}}(\ell,0)$-module. Fifth, we completely determine the following branchings: 1 The branching from $L_{\widehat{sl_{\infty}}}(\ell,0)\otimes L_{\widehat{sl_{\infty}}}(\ell',0)$ to $L_{\widehat{sl_{\infty}}}(\ell+\ell',0)$ for quasi modules. 2 The branching from $\widehat{sl_N}(\mathbb{C}_q)$ to its Levi subalgebras. 3 The branching from $\widehat{sl_N}(\mathbb{C}_q)$ to its subalgebras $\widehat{sl_N}(\mathbb{C}_q[t_0^{\pm M_0},t_1^{\pm M_1}])$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源