论文标题
在亚临界或临界生长下,分数拉普拉斯的阳性解决方案的存在和多样性
Existence and multiplicity of positive solutions for the fractional Laplacian under subcritical or critical growth
论文作者
论文摘要
我们研究了涉及分数拉普拉斯式的方程式的差异型问题,以及符合亚临界或关键生长条件的反应术语,具体取决于正参数。应用BONANNO的临界点结果,一旦参数位于(明确确定的)阈值之下,我们就会证明存在一个或两个正解。作为应用程序,我们找到了分数brezis-nirenberg问题的两种阳性解决方案。
We study a Dirichlet type problem for an equation involving the fractional Laplacian and a reaction term subject to either subcritical or critical growth conditions, depending on a positive parameter. Applying a critical point result of Bonanno, we prove existence of one or two positive solutions as soon as the parameter lies under a (explicitly determined) threshold. As an application, we find two positive solutions for a fractional Brezis-Nirenberg problem.