论文标题

元学习,用于几次NMT改编

Meta-Learning for Few-Shot NMT Adaptation

论文作者

Sharaf, Amr, Hassan, Hany, Daumé III, Hal

论文摘要

我们提出了Meta-MT,这是一种在几次设置中适应神经机器翻译(NMT)系统的元学习方法。 Meta-MT提供了一种新的方法,使NMT模型易于适应许多目标域,并具有最小的域内数据。我们将NMT系统的改编作为一个元学习问题,根据模拟的离线元训练域的适应任务,我们学会了适应新的看不见的域。我们评估了具有一般大型NMT系统的十个领域的拟议元学习策略。我们表明,当很少有域内示例可用时,元MT明显优于经典域的适应性。我们的实验表明,在仅看到4,000个翻译单词(300个平行句子)之后,元MT的表现可以胜过高达2.5个BLEU点。

We present META-MT, a meta-learning approach to adapt Neural Machine Translation (NMT) systems in a few-shot setting. META-MT provides a new approach to make NMT models easily adaptable to many target domains with the minimal amount of in-domain data. We frame the adaptation of NMT systems as a meta-learning problem, where we learn to adapt to new unseen domains based on simulated offline meta-training domain adaptation tasks. We evaluate the proposed meta-learning strategy on ten domains with general large scale NMT systems. We show that META-MT significantly outperforms classical domain adaptation when very few in-domain examples are available. Our experiments shows that META-MT can outperform classical fine-tuning by up to 2.5 BLEU points after seeing only 4, 000 translated words (300 parallel sentences).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源