论文标题

纠缠熵的增强区域法的稳定性

Stability of the enhanced area law of the entanglement entropy

论文作者

Müller, Peter, Schulte, Ruth

论文摘要

我们考虑了一个多维连续体Schrödinger运算符,该操作员是通过紧凑的潜在潜力对负Laplacian的扰动给出的。我们在相应的无准费米气体的基态的两部分纠缠熵上同时建立了一个上限和下限。边界证明,纠缠熵的缩放行为仍然是对数的增强区域定律,就像在自由费米气体的未受干扰情况下一样。上限的核心思想是将这些类型的Schrödinger操作员使用限制吸收原理。

We consider a multi-dimensional continuum Schrödinger operator which is given by a perturbation of the negative Laplacian by a compactly supported potential. We establish both an upper and a lower bound on the bipartite entanglement entropy of the ground state of the corresponding quasi-free Fermi gas. The bounds prove that the scaling behaviour of the entanglement entropy remains a logarithmically enhanced area law as in the unperturbed case of the free Fermi gas. The central idea for the upper bound is to use a limiting absorption principle for such kinds of Schrödinger operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源