论文标题
椭圆台球中三个周期性的圆周和尚未不变的
Circum- and Inconic Invariants of 3-Periodics in the Elliptic Billiard
论文作者
论文摘要
包围界穿过三角形的顶点;一个无关与场边相切。我们研究了椭圆台球中三个周期的1d家族的某些圆锥体的可变几何形状。有些表现出有趣的不向导,例如长宽比和焦距的成对比率。
A Circumconic passes through a triangle's vertices; an Inconic is tangent to the sidelines. We study the variable geometry of certain conics derived from the 1d family of 3-periodics in the Elliptic Billiard. Some display intriguing invariances such as aspect ratio and pairwise ratio of focal lengths.