论文标题

二聚体模型和保形结构

Dimer Models and Conformal Structures

论文作者

Astala, Kari, Duse, Erik, Prause, István, Zhong, Xiao

论文摘要

在这项工作中,我们研究了与二聚体模型相关的变分问题,这是一类模型,这些模型来自第二个维度的概率和统计力学,这是过去几十年来激烈研究工作的重点。这些模型产生了具有梯度约束的Lipschitz函数上的非差异功能的无限家族,这取决于一类Monge-ampère方程的dirichlet问题的解决方案。我们为此无限类功能解决了许多或未出现的开放问题。特别是,我们证明了所有二聚体模型的最小化器的规律性(也称为高度函数)的完整分类,用于天然的多边形类别(简单或多重连接)域,在数值模拟和其他地方进行了大量研究。我们的分类特别表明,Pokrovsky-Talapov法律在冷冻边界上的一般点上为所有二聚体模型所持有,此外,还显示了二聚体模型的非常强大的局部刚性,可以将其解释为几何普遍性。此外,我们对相关的自由边界的规律性进行了完整的分类,在文献中也称为冷冻边界或北极曲线,并证明它们都是代数曲线。功能缺乏可不同的性能与monge-ampère方程的解决方案的边界行为密切相关,我们证明对这些方程的完全分类,具有独立的利益。

In this work we study the variational problem associated to dimer models, a class of models from integrable probability and statistical mechanics in dimension two which have been the focus of intense research efforts over the last decades. These models give rise to an infinite family of non-differentiable functionals on Lipschitz functions with gradient constraint, determined by solutions of the Dirichlet problem on compact convex polygons for a class of Monge-Ampère equations. We settle a number or outstanding open questions for this infinite class functionals. In particular we prove a complete classification of the regularity of minimizers, also known as height functions, for all dimer models for a natural class of polygonal (simply or multiply connected) domains much studied in numerical simulations and elsewhere. Our classification in particular implies that the Pokrovsky-Talapov law holds for all dimer models at a generic point on the frozen boundary and in addition shows a very strong local rigidity of dimer models which can be interpreted as a geometric universality result. Furthermore, we give a complete classification of the regularity of the associated free boundary, also known in the literature as frozen boundary or arctic curves and prove that they are all algebraic curves. The lack of differentiability of the functionals is intimately connected to the boundary behaviour of the solutions to the Monge-Ampère equations and we prove a complete classification for these, of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源